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Abstract—Numerical Solutions for the Nusselt Numbers (CHF and CW'T) and the Friction Factor times Reynolds
Number have been obtained for fully developed laminar flow of a MPL (Modified Power Law) fluid within a square
duct. The solutions are applicable to pseudoplastic fluids over a wide shear rate range from Newtonian at low shear
rates through a transition region to power law behavior at higher shear rates. A shear rate parameter is identified, which
allows the prediction of the shear rate range for a specified set of operating conditions. Numerical results of the Nusselt
numbers (CHF and CWT) and the Friction factors times Reynolds number for the Newtonian and power law regions
are compared with previous published results, showing agreement with 0.02% in Newtonian region and 4.0% in power

law region.
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INTRODUCTION

Because of wide applications m engineering, especially m the
design of compact heat exchangers, much effort has been spent in
determiming the pressure drop and heat transfer characteristics of
non-circular ducts. The prediction of pressure drop and heat trans-
fer to fluids flowing in non-circular ducts are important in many
engineering applications. Consequently, extensive analytical and
experimental studies have been carried out on such flow systems.
The analyses of the flows m non-creular ducts such as rectangular
ducts are generally more complication than that of the circular pipe
and the parallel plates. The investigation of the laminar flow and
heat transfer behavior m a rectangular duct has become mcreas-
mgly importart as a result of the ongomg research of en advanced
liquid cooling module for electronic packaging by a mumber of rec-
tangular charmels. Calculation of the friction factor for fully devel-
oped laminar flow in non-circular ducts requires a two dimensional
analysis 1 contrast to the usual one dimensional analyses for a cir-
cular pipe or parallel plates. The boundary condition on the veloc-
ity for a fluid flowing through a non-circular ducts is the simple no-
slip condition, the same as for creuler pipe end parallel plates flows.
For fully developed lammar flow of Newtoman and non-Newto-
man power law fluids m a square duct, the solutions are well known
for both the classical boundary conditions of constent wall temper-
ature (CWT) and constant wall heat fhax (CHF) and the pressure
drop.

For Newtoriean fluids, pressure drop and heat transfer coefficients
were calculated by Shah and London [1978], Rothfus et al. [1964],
Yang et al [1998] etc. For power law fluids, Chandrupatla [1977],
Wheeler and Wissler [1965], Kozicki and Tiu [1971], and Kozicki
et al. [1966], Lee [1998] obtamed those enalytically and experimen-
tally.
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An understanding of non-Newtonian fluid flow behavior will
contribute substantially to the solution of a vanety of ducts of arbi-
trary cross-section. It 18 of importance to have a knowledge of the
characteristics of the pressure drop and the forced convection heat
tramsfer m fully developed laminar non-Newtoman flow through a
squere duct to exercise an appropriate control over the performeance
of the heat exchanger and to economize the process. Furthermore,
the results provide an appropriate basis for estinating the effects of
the reduction of fluid frictional drag and heat transfer enhancement.
Recently a large mumnber of heat exchangers are designed and mamu
factured for the automotive and chemical process mdustries to heat
or cool pseudoplastic fluids. Even today, there is a general lack of
experimental data for heat transfer coefficients winch are required
for the heat exchanger designs. It s felt, however, that the theologi-
cal behavior can best be investigated with a well-defined geometry
of ten found m mdustry, such as a square duct.

Non-Newtonian fluids usually have been assumed as power law
fluds m the analysis. Many non-Newtoran fluids, however, have
viscous properties which are differentt in1 the various sheer rate ranges.

Although a power law model has been used extensively for cal-
culating velocity profile and heat transfer coefficient in engmeer-
mg, 1t has sigmficant disadvantages that it only applies to the power
law region m the flow curve and the apparent viscosity at the cen-
troid of the duct becomes mfimite.

A constitutive equation is one that relates the shear stress or ap-
parent viscosity 1 a fhud to the shear rate through the rheological
properties of the fluid. A converment way to depict the constitutive
equation is to plot a curve of apparent viscosity against shear rate.
Fig. 1 shows such a graph which 1s mdicative of the behavior of
many purely viscous pseudoplastic fluids. In the lower shear rate
range, the flud 18 Newtomean and 1 the lugher shear rate range the
fhuds acts as a power law flnd. Between these region 1s a transi-
tion range.

Such a theological behavior m the transition zone causes several
problems.
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Fig. 1. Typical flow curve of pseudoplastic fluid.

1. It should be determmed m which shear rate range the system
is operating and if either of the Newtonian or power law solutions
can be applied. This 1 not always sinple because there 1s not a sut-
able shear rate parameter available and also the solutions were ob-
tamed mdependently. If the shear rate range falls within the transi-
tion zone then a “transition equation” must be apphed for the type
of non-Newtonian fluid considered here.

2. If the designer, as 1 often the case, builds a small prototype
model, then the shear rate range as well as Reynolds number must
be considered in the design of the larger system for similitude to
be observed.

What is required to overcome these difficulties is a solution for
a fluid which has rheological characteristics similar to Fig. 1.

A number of comstitutive equations can describe the apparent
viscosity-shear rate relation for fluids such as shown in Fig. 1. A
convernent and useful equation of pseudoplastic fluid 18 the “Mod-
ified Power Law model™ wiuch was first proposed by Dunleavy
and Middleman [1966].

na:—n‘“_ — (M)
Mo
L+

Tnspection of Eq. (1) reveals that the apparent viscosity becomes
equal to zero shear rate viscosity at very low shear rates and the
fluid is operating in the Newtonian region of Fig. 1. At the higher
shear rates the fhnd becomes a power law fluid. At mtermediate
shear rates, there 15 a trensition zone. An additonal advantage of
the modified power law model over other constitutive equations
such as Sutterby [1966], Cross [1965], Carreau [1972), etc. 15 that
the famihar Newtoran and power law Reynolds mumbers are re-
tamed m the analysis.

The purpose of the present study 1 to extend our knowledge by
presenting solutions for fluids having the rheological characteristics
Ulustrated m Fig. 1 and to develop the relationships between the
friction factor-Reynolds mumber and the heat trensfer coefficients
for a Modified Power Law fluid. Such a solution should have the
characteristics that at low velocities (low shear rates) the Newto-
mian solution is an asymptote while at large shear rates the power
law solution is an asymptote. Tn addition, the solution should predict
the appropriate pressure drop and heat transfer behavior m the tran-
sition zone. Finally a parameter is needed to predict the shear rate
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range 1 terms of the operating characteristics of the system. For a
circular tube [Brewster and Trvine, 1987], and concentric annulus
[Capobianchi and Irvine, 1992], such solutions are available.

When usmg a particular constituive equation, it 1s necessary to
determine if the equation correctly describes the relation between
the apparent viscosity and the shear rate for the particular flind bemg
considered Thus it is required to measure the rheological proper-
ties n the constitutive equation and compare the equation of predic-
tions with the expermmental values of the apparent viscosity vs. the
shear rate. This was done for the CMC (Sodium Carboxymethyl
Cellulose) solutions by Park [1991, 1993].

ANALYSIS

The study of fully developed laminar flow in ducts comprises
one of the findamental and classical problems n fhind mechames
and heat transfer. Solutions to such problems are obtamed by solv-
ing the appropriate forms of the momentum and energy equations
along with the associated boundary conditions.

1. Pressure Drop

It 18 convernent to start with the corservation equations to solve
a problem related to fhud flowing through duct For steady flow of
an incompressible fluid with negligible viscous dissipation, the gov-
erning equations depend on the apparent viscosity that related to
the shear stress and shear rate.

For Newtonian fluids, the following simple relation 7,=1, d,=n;
d, has been used. But, for non-Newtonian fhuids, the apparent vis-
cosity is not a fluid property but is a function of velocity field. The
momentum equation of non-Newtoman flind depends on the rela-
tionship between the shear stress and the shear rate. For purely vis-
cous non-Newtonian fluids, the following simple relation has been
used [Hartnett and Kostic, 1989].

7, =na(LILIH)@—2 +g—2)
The apparent viscosity 18 a function of three mvanants of the rate
of deformation tensor d, for purely viscous non-Newtonian fluids.
For an mncompressible find, the fwst wvariant vamshes and for a
simple shear flow even the thrd mwvanant vanishes. The apparent
viscosity 15 a fimection of the second invariant only as Aris [1962],
Bird et al [1977], and Wheeler and Wissler [1965].

N, =1,(JT72), where T1 2{(3—“)2 +@—;‘T}

dy
For power law fhuds, the apparent viscosity can be represented as
Wheeler and Wissler [1965].

n

.k (1)

The shear stresses which include gradients in both the y and z di-
rections for a power law fluds are

n-1
_Tfouy _(ouyTz ou
T’”ﬁK[(ay) +(az)] ay

n-l
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& _K[(ay) +(BZH 74
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From the power law relation T=n,-7=K¥", the simple analytical
models which neglect cross coordinate terms are

__fouy 'ou _fouy™
k() 5k ()

oY ' ou quy!
K(az) 9z Ma K(az)

The shear stresses include gradients both y and z directions for Mod-
ified Power Law fluids are as following.

. M, 2u
¥r w1 ay
Mo (8u) (au) z
1+ +
]: dy, oz }
_ Mo Ju
Far 5l gy
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Form the relation ©=7),Yand Eq. (1), the simple analytical models

are as following.

= My du

X ' +nﬂ(au)1 may
K\dy

_ Mo au
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For fully developed flow through ducts, 1t 15 possible to assume the
following conditions;

du

o =0,v=w=0,p=p(x),u=u(y,z)

For a non-Newtorman Modified Power Law fhud flow through a

square duct as shown in Fig. 2, the fully developed velocity field
18 described by the following momentum equation.

d duy , ¢ duy  dp
ay(n”ay) az(n“ zaz) ox @
with boundary conditions

u(y, ¢) =0,

Ju(0,z)
dy =0

Fig. 2. Coordinate system for a rectangular duct.

_p duy,0) _
u(b,z)=0, o 0

The analytical moedels of the apparent viscosity for Modified Power
Law fluids are as following.

b g, =—

Nofouy " Mo (au) "
1+K(ay) T 0z

Following dimensionless quantities may be defined

MNaw =

L€ ol o wt]
o =r b= =—

b’ 4o’ 4

dp

+7_X +_ Z o ZthX
b e A e e
Dh Dh pu

where the Darcy friction factor (f=—87,/pu’) is defined by a dimen-
stonless pressure drop and D, 18 hydraulic diameter (D,=4R,={4x
cross—sectional area/wetted perimeter} =4bc/b+c).

+_ e Mo

M=% —_,n -

7 1+m(£)ln
K\D,

(1 +B) (3)

From Egs. (1) and (4),

as 3—0,m,—n, and Re, —>Re,,

as B—very large, N,—~K(7)"" and Re,—~Re,
For a non-Newtorman modified power law flnd through a square
duct, the contimuty equation cen be expressed by the following equa-
tion

:—j udA;—j [ udydz (4)
The dimensionless forms of Eqgs. (2) and (4) are

(o +1) 1
8o’ jj j;f udy'dz'

9/ .ou™ 2 f.,ou’
+(m,y +)+ (n +)=—1 (6]
dy Jdy dZ dz

with boundary conditions

f-Re

(5

'm
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0, du (0:2 ) —0

u™(y',c) oy

Wb 7 =0, du (y+ ,0) —0
0z

Thus Eq. (6) could give the complete solution for the fluids m Fig. 1
and the final results can be presented as the product of f-Re,, versus
the shear rate parameter [3.
2. Heat Transfer

When considering the fluid mechanics of non-Newtonian flow,
the velocity boundary conditions at swrfaces ave quite straight for-
ward Except for certain classes of fluids which exhibit a slip phe-
nomenon at solid boundaries, the boundary condition 18 normally
taken as a no-slip or zero velocity at all solid surfaces. For heat trans-
fer analyses however, the situation becomes more complicated. This
18 because there are many different ways to heat a well which in
turn affects the type of thermal boundary conditions.

Tn general, the amount of heat transfer from a surface, or the
temperature difference between the wall and the fluid are calculated
using the equation

QTomI:hA(TW_Tf)

where:
Qp~heat transferred from the wall to the fluid [W]
h=convective heat transfer coefficient [W/m’K |
A=heat transfer area [m?]
T7—T~temperature difference between wall and flud [K]

Heat transfer coefficients are normally given m terms of Nusselt
number (Nu=hL/) where L 1s a characteristic length n a particu-
lar problem. Also, the fluid temperature, T, will depend upon a par-
ticular heat transfer situation. Both the characteristic length and the
appropriate fhud temperature will be identified in the following pres-
entations.

Since the heat transter coefficient can vary considerably for dif-
ferent thermal boundary conditions especially for non-circular duct,
1t 18 moportant that the boundery conditions be specified correctly.
Although the mumber of thermal boundary conditions 18 m princi-
ple mfimte, several classical types have been identified and are m
COITUTON USe.

2-1. Energy Equation (CHF, H1)

Consider the case of constant heat flux (q,,) per vt area at wall
m a square duct Techmcally, constant heat fhux problems occur in
a plenty of situations: electric resistance heating, radiant heating,
nuclear heatmg, and mn counter flow heat exchangers.

The energy equation for the themmally developed flow in a square
duct neglecting viscous dissipation and rate of energy generation
[Incropera and DeWitt, 1996] with constant heat flux (CHF) can
be written as

FT 9Ty AT
k(ay2 Y ) TPk @
with boundary conditions

IT(0,2)
oy 0

T(y.0)=T,, LD g

T(b,z) =Ty,
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The term “fully developed temperature profile” mmphes that there
exists a generalized temperature profile that is invariant with duct
length. The criterion for fully developed temperature profile can be
expressed as

)0 ®
Writing the convection rate equation,

q,=h(T,—T)=constant
Ifhis a constant, then

T,—T;=constant
from wiuch

dr, _dr,
dx  dx

Thus, from Eq. (7)

aT _dT,_dT,

ox dx  dx
Substituting these into Eq. (8)

T 9T ar,

o4 = - F
k(af af) Uk

The following dimensionless quantities may now be defined

TTy e T

T+
TB 7TW’ Nqu

The dimensionless form of Eq. (7) becomes

It 2t

i N
ay+2 az+2
with boundary conditions

=—4u {9)

T++(b+7z+) :0= 0T (0+,Z ) -0
Iy
T++(y+,c+) =Ty, aT(—X’O) =0
az

Considermg the definition of bulk temperature, T;:

_[ uTdA,

A

Te==70 (10)
For the square duct geometry, Eq. (10) may be rewnitten m dunen-
sionless from

N CEI 1
1o I; E uT dy dz

()

Introducing the defimition of T and solving for the Nusselt mun-
ber gives
(o 1y 1

1606* j; E u+T++dy+dZ+

Nug, (12)

2-2. Energy Equation (CWT, T)
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Next consider the case where the surface temperature (T',,) 15 con-
stant. This is another very common convection application, which
occurs in such heat exchangers as evaporators, condensers.

The energy equation for the themmally developed flow m a square
duct neglecting viscous dissipation and rate of energy generation
[Incropera and DeWitt, 1996] with constant wall temperature (CWT)
can be written as

v} 2
k(g—; +3—an) :pcpug;i (13)

with boundary conditions

IT(0,7) _
dy

AT(y,0
T(y,0) =Ty —g—) -0

T(b,z)=Ts. 0

For constant wall temperature (T, =constant)

dr,

dx=0

and Eq. (7) reduces to

dx T, T,dx

dT _T,-TdT,

substituting m Eq. (13),

T, ITY T,—TdT,
k(a;ﬁ ' azz)fpc*’uTHE dx

Defimng the following dimensionless quantities.

_T-T.
T, T.

T+

The dimensionless form of Eq. (13) becomes

It 2t

9T T
ay+2 az+2

with boundary conditions

=—4u"T"Nu, {14

T, =0, 02D g
dy

Ty ¢ =0, al;y—o) 0
7

Egs. (12) and (14) were solved numerically to obtain the relation-
ship of Nusselt mumber vs. the shear rate parameter 3 for constant
heat flux and constant wall temperatire with the dimensionless ve-
locity distribution, u" calculated from the solution of the previous
momentumn equation.

NUMERICAL ANALYSIS

The numerical formulation and solution were relatively straight-
forward. An Alternating Direction Implicit method was used with
successive overrelaxation. The algonthm was as follows:

Step 1 : Specify values of n, o and f.
n=1.0,09 0807, 06,0504
o =1.0 (for square duct)

107 <B<10°

Step 2 : Assume a velocity profile starting with a u™(y", 2 )=0
for a Newtoruan flud. The Newtomean velocity profile may then
be used as the mutial velocity profile for the non-Newtonien MPL
calculation.

Step 3 : Caleulate 1}, ,, T, . flelds by using the assumed velocity
field

Step 4 : Solve for U"=u"(", ) by using ADI (Altemnating Di-
rection Imphicit) method and obtain fRe,, by Simpson’s rule. TDMA
(Tri-Diagonal Matrix Algorithm) may be used for obtaining the ve-
locity profile.

Step 5 : Calculate new 1, ,, T}, , from the new value of the ve-
leetty field.

Step 6 : Calculate a new u™(y”, Z)and f*Re,,.

Step 7 : Compare the fRe,, value with the value calculated in
step 4.

Step 8 : Use the new {'Re, to calculate a new u”™ and {*Re,, until
convergence.

Step 9 : Obtain the u™ field and fRe,, .

Step 10 : Use the u™ field and f*Re,, to obtain temperature pro-
file by TDMA.

Step 11 : Usethe u™, fRe,, and T"" to calculate Nusselt number
by Simpson’s rule.

RESULTS AND DISCUSSION

A number of medified power law mumerical solutions have been
obtained, which for fully developed laminar duct flows include fric-
tion factors and Nusselt numbers for a square duct In the follow-
mg, the results of these analyses will be presented m graphical form.
These results are shown in Fig. 3 to Fig. 5.

1. Friction Factors for Fully Developed Flows

A mumerical solution to Eq. (5) for a square duct are shown m
Fig. 3. The figure illustrates that m a quantitative sense, [ defines
the three regions as follows.

Region I - Newtonian <107

70

80t

plt 3

40t

FRen

30

R0

St
logf

Fig. 3. t-Re,, for a MPL fluid in a square duct.
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Region II - Transition 107 <B<10°
RegionIII - Power Law B=>10°

Fig. 3 also illustrates several mmportant features of modified power
law system. First, for complete similarity modeling, the modified
Reynolds number Re,, and the parameter B must both be consid-
ered. Also, a considerable difference exists if it is assumed that the
system 18 operating m region I when it actually 13 operating n Re-
gion . Simple calculations show that errors in pressure drop predic-
tions can be as large as several hundred percent if such an uncer-
tamty exists n correct operating region.

As the shear rate parameter mereases, the Reynolds mmmber m-
creases. As the power law flow mdex(n) mcreases, the tendency
mereases to retain Newtomman charactenistics at low Reynolds num-
bers. As the flow index decreases, the tendency increases to retain
the charactenistics of power law flud at high Reynolds mumbers.

The mumerical results of the friction factor and Reynolds mum-
bers relations and the Nusselt mumbers for the Newtonian and the
power law region were compered with other previously published
asymptotic results [Shah and London, 1978; Rothfus et al., 1964,
Chandrupatla, 1977, Wheeler end Wissler, 1965; Kozidk and T,
1571; Kozcki et al, 1966]. For Newtoman fluid flow through a
square duct, the differences of the friction factors times the Rey-
nolds numbers between the results of Shah and London [1978] and
the present results are less than 0.02%.

2. Fully Developed Laminar Heat Transfer

For Newtornan fhud flow through a square duct, the differences
of the Nusselt minber (CHF and CWT) between of the results of
Shah and London [1978] and the present results are less than 0.02%.
These results are shown m Table 1.

For power law fluids which various flow indices (n=0.4, 0.5, -+,
1.0) the differences of the friction factors times the generalized Reyn-
olds mumbers between the results of Kozicki et al. [1966] and the
present results with B=10" are less than 0.9%%. The differences of
the fiiction factors times the generalized Reynolds mumbers between

Table 1. Comparison of f-Rep,, Nuz, and Nuy of Newtonian fluid

f*Reg, Nug, Nur
(L 56.9083 3.6079 2.9760
(2) 56.9184 3.6070 2.9760
(1) Shah and London [1978].
(2) Present calculation

Table 2. Comparison of - Re, of power law fluids

n (1) (2) (3)
1.0 56.912 56.876 56.910
0.9 47.640 47.620 47.887
0.8 39.692 40.244 40.293
0.7 33.080 33.804 33.894
0.6 27.540 28.356 28.489
0.5 22.932 23.740 23.909
0.4 - 19.816 20.008

(1) Wheeler and Wissler [1965].
{2y Kozicki et al. [1966].
(3) Present calculation
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4.3

Fig. 4. Nu, for a MPL fluid in a square duct.

3.6

3.5}
3.4
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e e S M SR |

logp
Fig. 5. Nu, for a MPL fluid in a square duct.

the results of Wheeler and Wissler [1965] and the present results
with §=10" are less than 4.0%. These results are shown in Table 2.

Figs. 4 and 5 show the fully developed Nusselt numbers versus
the shear rate parameter for a square duct for the thermal boundary
conditions of comstant wall temperatiwe (CW'T) and constant heat
flux (CHF). It is interesting to note that the effect of the shear rate
parameter [3 1s much less for the fully developed Nusselt mumbers
than for the product £-Re,,. Thus it would appear that the effect of
B on the hydrodynamic design 1s much more critical for the thermal
design.

For power law fluid flow through a square duct, the differences
of the Nusselt mmmbers (CHF and CWT) between the results of the
results of Chandrupatura [1977] and the present results are less than
4.0%. These results are shown in Table 3.

The shear rate parameter defines the transition region (approxi-
mately 1072°<B<10P%) and is useful to estimating whether the fluid
is a fully developed Newtonian fluid (B<10"°) or a fully developed
Power Law fluid (3=10%"). Thus the shear rate parameter [3 can be
used to determine in which of the three regions (Fig. 1) a particular
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Table 3. Comparison of Nu of power law fluids

n N qua) NU.T(I) Num(z) Nu;w
1.0 3.612 3.607 2.975 2.976
0.9 3.648 3.657 2.997 3.027
0.8 3.689 3718 3.030 3.087
0.8 3.741 3.793 3.070 3.155
0.6 3.804 3.887 3.120 3.227
0.5 3.889 4.010 3.184 3317
0.4 - 4175 - 3.436

(1) Chandrupatla [1977].

{2) Present calculation

systemn 1s operating.

CONCLUSION

Fluids which are called “power law”™ sometimes follow that con-
stitutive equation, but depending upon operating shear rate they can
also act as Newtonian or Transitional fluids.

By using a more general constitutive equation, the modified power
law equation, solutions are possible which take this shear rate de-
pendence into account and through a dimensionless shear rate par-
armeter enable an appropriate choice of the pressure drop and heat
transfer solutions.

This situation has been examined for forced laminar convection
m duets and 1t 15 llustrated that serious errors can results if the -
correct shear rate solution is used Of particular concern are duct
flows operating at low Reynolds numbers.

Numerical solutions for laminar fully developed flow were ob-
tained for friction factor times Reynolds number for MPT, fluid flow
through square duct By using the MPL constitutive equation, we
obtamed solutions which are applicable over a wide shear rate range
of pseudoplastic fluids from Newtonian behavior to the igher shear
rate range. A shear rate parameter was identified which specifies
whether a particular system for a typical pseudoplastic fluid is oper-
ating in the Newtomary, trensition, or power law region. The muner-
1cal results of the pressure drop and heat transfer augmentation for
the Newtonian and power law regions were compared with other
previously published asymptotic results as discussed earlier.

As the shear rate increases, the tendency increases to retain power
law fhad characteristics at lugh Reynolds mumbers. As the shear
rate decreases, the tendency mereases to retam Newtorian fhud char-
acteristics at low Reynolds numbers.

During the analysis, the shear rate parameter [§ can be used to
determmne that the particular system 1 operating in one of the three
regions (Figs. 1 and 3).

For pseudoplastic non-Newtorman flud, the Modified Power Law
model is recommended to use because the fluid properties have big
discrepancies between the power law model and the actual values
m low and medium range of shear rates.

The numerical solution makes possible the conservation of simil-
1tude when designing duct systems for such fluids as modified power
law fluids since both the appropriate Reynolds mumber and the shear
rate ranges are considered.

From a comparisen of the numerical calculations between New-
tonian and non-Newtonian fluid flow it is obvious that for the ther-

mal boundary condiions (CHF emd CWT) a non-Newtoran fluid
with flow behavior index less than one gives a higher heat transfer
coefficient than a Newtoran {luid. Due to the reduction in friction
power requirement and the augmentation m heat transfer rates, mod-
ified power law fluids seem to be better working fluids in heat ex-
changer compared to Newtoman fluids. On the other hand, the use
of appropriate modified power law fluids may lead to heat transfer
enhancement without the handling difficulties.

The feasibility of application of thus friction factor and Reynolds
number relation will be valid for the determination of cross-sec-
tional shapes and tortuosities of creviced chammels in packed beds
and porous media; and the heat transfer augmentation for modified
power law fhuids m a square duct can be apphed for the design of a
liquid cooling medule m electromic packagmg, where uneven ther-
mal boundary conditions with non-circular ducts are commonly em-
ploved.

NOMENCLATURE

- heat transfer area [m’]

: cross-sectional area of duct [m?]

: one half of duct width [m]

: dimensionless duct width [-]

- one half of duct height [m)]

: dimensionless duct height [-]

: specific heat [Thg-K]

- hydraulic diameter [4xcross-sectional area/wetted pe-
rimeter= dbc/(b+c¢)] [m]

: shear rate tensor [1/5]

- Darcy friction factor [-2(dp/dx)D,/pu] [-]

- convective heat transfer coefficient [W/m*K]

: power law consistency [Ns*/m’]

: thermal conductivity [W/m-K]

Nu : Nusselt number [-]

Nu,  : Nusselt number of CHF [-]

Nu, : Nusselt number of CWT [-]

CT‘CT‘Q}}

+

Do

=N

n : power law flow index [-]

Qpue - heattransferred from the will to the fluid [W]

Qw - heat flux at wall [J/s-m?]

R, : hydraulic radius (cross-sectional area/wetted perimeter=
be/(b+c)) [m]

Re;, : Newtonian Reynolds number (puD,/m;) [-]

Re, - power law Reynolds number { pu*™D,/K) [-]

Re, - medified power law Reynolds number (puD,/m" [-]
T : temperature [K]
T : dimensionless temperature [-]

™ : dimensionless temperature [-]

T, : bulk temperature [K]

T, : fluid temperature [K]

Ty : wall temperature [K]

u : velocity n flow direction [m/s]

u : mean velocity in flow direction [m/s]

u : dimensionless velocity in x-direction (wu) [-]

u’t - dimensionless velocity in x-direction (2u'/f*Re, ) [-]
X, v, Z :coordinates
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*

s aspect ratio (¢/b) [-]

- shear rate parameter [(N,/K)WD,) ™| [-]
- shear rate [1/s]

. apparent viscosity (T/Y) [INs/m’]

: zero shear rate viscosity [Ns/m’]

: reference viscosity (N,/(1+B)) [INs/m*]

: dimensionless viscosity (1,1 [-]

: fluid density [kg/m’]

: shear stress [Ns/m’]

s invariants of shear rate tensor [ -]

&

T

ﬂ'oj:a’{;j-%-mg

—
=
=
=

3
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