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Abstract-Numerical Solutions for the Nusselt Numbers (CHF and CWT) and the Friction Factor times Reynolds 
Ntanber have been obtained for fully developed laminar flow ofa  MPL (Modified Power Law) fluid within a square 
duct. Tile solutions are applicable to pseudoplastic fluids over a wide shear rate range from Newtonian at low shear 
rates through a transition region to power law behavior at higher shear rates. A shear rate parameter is identified, which 
allows the prediction &the shear rate rauge for a specified set of operating conditions. Numerical results of the Nusselt 
ntanbers (CHF and CWT) and tile Friction t-actors times Reynolds ntanber for tile Newtonian and power law regions 
are compared with previous published results, showing agreement with 0.02% in Newtouian region and 4.0% in power 
law region. 
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INTRODUCTION 

Because of wide applications in engineering, especially in the 
design of compact heat exchangers, much effort has been spent in 
detemfinmg tile pressure drop and heat b-ansfer characteristics of 
non-cn-cular ducts. Tile prediction of pressure drop and heat trans- 
fer to fluids flowing in non-circular ducts are important in many 
enginemng applications. Consequently, extensive analytical and 
experimental studies have been carried out on such flow systems. 
Tile analyses of the flows in ncxl-circular ducts such ets rectangular 
ducts are generally more complication than that of tile drcular pipe 
and the parallel plates. The investigation of the laminar flow and 
heat transfer behavior in a rectangular duct has become increas- 
ingly important as a result of the ongoing research of an advanced 
liquid coolirlg module for electronic packaging by a nurnber of rec- 
tangular channels. Calculation of the fiiction factor for fully devel- 
oped laminar flow in non-circular ducts requires a two dimensional 
analysis in cc~lb-a,st to tile usual one dimensional analyses for a cn-- 
cular pipe or Iml-allel plates. Tile botaldary condition on the veloc- 
ity for a fluid flowing through a non-circular ducts is the simple no- 
slip condition, file same as for circular pipe and Imrallel plates flows. 
For fully developed larainar flow of Newtc~fian and non-Newto- 
nian power law fluids in a square duct, tile solutions are well known 
for both tile classical botaldary conditions of constant wall temper- 
ature (CWT) and constant wall heat flux (CHF) and the pressure 
di-op. 

For Newtsxfian fluids, pressure &-op and heat b-ansfea- ccetficients 
were calculated by Shah and London [1978], Rothfus et al. [1964], 
Yang et al. [1998] etc. For power law fluids, Chanch~apada [1977], 
Wheeler and Wissler [ 1965], Kozicki and Tin [1971 ], and Kozicki 
et al. [1966], Lee [1998] obtained those analytically and experimen- 
tally. 
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All understanding of nc~l-Newtonian fluid flow betkavior will 
coimibute substantially to the solution of a variety of ducts of arbi- 
trary cross-sectioi1. It is of importallce to have a knowledge of the 
characteristics of the pressure drop and the forced convection heat 
b-ansfer in flatly developed laminar non-Newtc~fian flow ttn-ough a 
square duct to exercise an appropriate com-ol over tile performance 
of the heat exchanger and to economize the process. Fu~ermore, 
the results provide an appropriate basis for eslmrating tile effects of 
the reduction of fluid frictional drag and heat transfer enhancement. 
Recently a large number of heat exdlangers are designed and raanu 
factured for tile automotive and chemical process indusbies to heat 
or cool pseudoplastic finds. Even today, there is a general lack of 
expermle,ltal data for heat b-ansfer coefficients which are required 
for tile heat ~xchmger designs. It is felt, however, that the rheologi- 
cal behavior can best be investigated with a well-defined geometry 
of ten found in indusby, such as a square duct. 

Non-Newtonian fluids usually have been assumed as power law 
fluids in the analysis. Many non-Newtonian fluids, however, tkqve 
viscous properties which are different in tile various shear rste ranges. 

Although a power law model has been used extensively for cal- 
culating velocity profile and heat transfer coefficient in engineer- 
ing, it ha,s significant disadvantages ttkqt it only applies to the power 
law region in tile flow curve and the apparent viscosity at the ce~l- 
troid of the duct becomes infinite. 

A constitutive equation is one that relates the shear stress or ap- 
parent viscosity in a fluid to the shear rate ttnough the rheological 
properties of the fluid A convenient way to depict the constitutive 
equation is to plot a curve of apparent viscosity against shear rate. 
Fig. 1 shows such a graph which is indicative of the betkqvior of 
many purely viscous pseudoplastic fluids. In the lower shear rate 
l-ange, the fluid is Newtonian and in tile higher shear rate iange tile 
fluids acts as a power law fluid Between these region is a transi- 
tion range. 

Such a rheological behavior in the b-ansition zone causes several 
problems. 
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Fig. 1. Typical flow curve of pseudoplastic fluid. 

1. It should be detennined in which shear rate l-ange the syskeln 
is operating and if" either of the Newtonian or power law solutions 
can be appliec[ Tiffs is not always simple because there is not a suit- 
able shear rote parameter available and also the solutions were ob- 
tared  indepe,Mendy. If the shear rate range falls within the b-torsi- 
lion zone then a %-axlsitic~t equation" must be applied for the type 
of  non-Newtonian fluid considered here. 

2. If  the designer, as is often the case, builds a small prototype 
model, then the shear rate range as well as Reynolds number must 
be considered in the design of the larger system for similitude to 
be observed. 

What is required to overcome these difficulties is a solution for 
a fluid which ha,s rheological characteristics similar to Fig. 1. 

A number of constitutive equations can describe the apparent 
viscosity-shear rate relation for fluids such as shown in Fig. 1. A 
convenient and useful equation of pseudoplastic fluid is the "Mod- 
ified Power Law model" which was fn-st protx~sed by Dutfleavy 
arm Middleman [ 1966]. 

1 ] 0  " 1 - n  
1 + ~ ( T )  

Inspection of Eq. (1) reveals that the apparent viscosity becomes 
equal to zero shear rate viscosity at very low shear rates arm the 
fluid is operating in the Newtonian region of Fig. 1. At the higher 
shear rates the fluid becomes a power law fluid. At it~mtediate 
shear rates, there is a b-msition zone. An a&!itional advantage of 
the modified power law model over other constitutive equations 
such as Sutterby [1966], Cross [1965], Carreau [1972], etc. is that 
the familiar Newtonian and power law Reynolds nuntbel-S are ro- 
tared  in the analysis. 

The purpose of the present study is to extend our knowledge by 
presenting solutions for finds having the theological characteristics 
illustrated in Fig. 1 and to develop the relationships between the 
fiiction factor-Reynolds number and the heat transfer coeffidents 
for a Mcxiified Power Law find. Such a solution should have the 
chm-actenstics that at low velocities (low shear rates) the Newto- 
nian solution is an asymptote while at large shear rates the power 
law solution is an asymptote. In addition, the solution should predict 
the appropriate pressure drop arm heat lransfer behavior in the tran- 
sition zone. Finally a parameter is needed to predict the shear rote 

lange in tellils of the operating dtaractelistics of the system. For a 
circular tube [Brewster and Irvine, 1987], and concentric anlailus 
[Capobianchi arm Irvine, 1992], such solutions are available. 

When  using a particular constitutive equation, it is necessary to 
determine if the equation correctly describes the relation between 
the apl~ent viscosity and the shear rate for the particular fluid being 
considered Thus it is required to measure the theological proper- 
ties in the constitutive eqt~ion and contlmre the eqt~ion of predic- 
tions with the experimei~t, al values of the apparent viscosity vs. the 
shear rate. This was done for the CMC (Sodium Carboxymethyl 
Cellulose) solutions by Park [1991, 1993]. 

A N A L Y S I S  

The study of fitly developed laminar flow in ducts comprises 
one of the fun&me~ltal and classical problems in fluid mechanics 
and heat trmsfer. Solutions to such problems are obtained by solv- 
ing the appropriate forms of the momentum and energy equations 
along with the associated boundary conditions. 
1. Pressure  Drop  

It is convenient to start with the conservation equations to solve 
a problem related to fluid flowing through duct. For steady flow of 
an incompressible find with negligible viscous dissipation, the gov- 
erning equations depend on rite apparent viscosity that related to 
the shear stress and shear rate. 

For Newtonian finds, the following simple relation %,=r L 4j=rlo 
c~j has been used. But, for non-Newtonian fluids, the aplmrent vis- 
cosity is not a find property lint is a fimction of velocity field. The 
momentum equation of non-Newtonian fluid depends on the rela- 
tionstfip between the shear sb-ess and the shear rate. For purely vis- 
cous non-Newtonian fluids, the following simple relation has been 
used [Hamtett and Kostic, 1989]. 

v,~. =rL(I, II, III) (~ i  + aO--~X) 

The apparent viscosity is a function of three invariants of the rate 
of deformation tensor 4: for purely viscous non-Newtonian fluids. 
For art incompressible fluid, rite f~st invaiant vanishes and for a 
simple shear flow even rite tt~d invaiant vanishes. The apparent 
viscosity is a function of the second invaliant only as Axis [1962], 
Bh-d et al. [1977], arm Wtteeler and Wissler [1965]. 

TI~ =TIo( I~/[-V-~),where II = 2 { ( ~ )  = +(0~-2u)2 } 

For power law fluids, the apparent viscosity can be represented as 
Wheeler and Wissler [1965]. 

�9 .-~ I ~- 

The shear stresses which include gradients in both the y and z di- 
rections for a power law fluids are 

�9 au +(Ouy?-Ou 
\az)  .1 ay 

n 1 

[( l au +(auyl  au 
%,=K ~y t, Oz) ] Oz 
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From the power law relation "r ~, the simple analytical 
models which neglect cross coordinate telms are 

_ / ~ u ,  " -~u  rSu','-' 
;;y, no+:K 

_/auV-'au _K(OUT-' 

The shear stresses include gradients both y and z directions for Mod- 
ified Power- Law fluids are as following. 

110 au 
"{~)'x - -  n 1 " - -  

1 KLt.Oy ) /.az)~l 
'% au 

~ z x  n l - -  

+n07r +r T az 
1 ~L~.~y j \~z )_ l  

Form die relation "r TL:/and Eq. (1), the simple mv_alytical models 
are a.s following. 

~0 8u 
me* +!r  

1 Kt,0y) 

~0 8u 
~=~ +m(auj~-oaz 

1 Kt.az) 

For fiflly developed flow tt~-ough ducts, it is possible to assume the 
following conditions; 

On 
~xx 0,v w 0,p p(x),u u(y,z) 

For a non-Newtouian Modified Power Law fluid flow through a 
square duct as shown in Fig. 2, the fifily developed velocity field 
is described by the following monlenttun equation. 

3 ( 3u'~+ ~ ( ~u'~ ~p 
aTytno> yJ  /no,  zJ (2) 

with boundary conditions 

u(y, c) =0, au(0,z) =0 ay 

Fig. 2. Coordinate system for a rectangular duct. 
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. . . .  au(y 0) 
UtD,Z)=U, ~ =0 

The analytical mcxlels of the apparent viscosity for Modified Power 
Law finds are as following. 

JJo I]o 

+n0rauj,- ,,no,  +n0r 

Following dimensionless quantities may be defined 

c b+=CC+l + cC+l 

2Dh~ x 
+ _y___ Z + Z 

Y D~' =D-~' f= --pg2 

where the Darcy friction factor (f=-8"cjp~ 2) is defined by a dimen- 
siolfless pressure &op and D~ is hydPaulic dianleter (Da=4Ra = {4 x 
cross-sectional area/wetted perimeter} =4bc?o+c). 

u +_u  q0 n2=~, -~,n+- 
I + - - - -  

K D~ 

R%~ = pgD~ R % -  pff~ ~D~ 
q0 ' K 

R% = pN)+ ~, 11" _ 
110 

rl 1+[3 

R% ~10(~J~ ++ u § 

~f. Re,,, 

Re = R % + a e  =p~7~_~pg2-'D ~ - K Oil0 ~(1 +[3) (3) 

+ 1+[3 
1] a,v" - -  1 n ++ 1 n 

1 + f .R% 

1]+= 1+~ 
[3(~ 1 j - " (  du + U ) '  -" 

1 + f .R% 

From Eqs. (1) and (4), 
as D ~ 0 ,  TL~TIo and R%~ReD~ 
as [3--+vmy large, rL--+K(T) >1 and R%-+R% 

For a non-Newtonian modified power law fluid ttn-ough a square 
duct, the continuity equation can be expressed by the followiig equa- 
tion 

u:~L u dA, : i l l  ~udydz (4) 

The dimensionless fox:ms of Eqs. (2) and (4) are 

*+ 2 
f R %  (cr 1) 1 

I;+I +u++dY (5) 

8 ( + au+h+ a ( +Su+h ~y+( qo.y-~Ty. ) ~ q o . d ~  ) =-1 (6) 

with boundary conditions 
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u++(y+,c +) =0, 3u++(0'z+) =0 
a y  

u++(b+,z +) =o, au++(Y+'~ o 
az  + 

Tile tmn  "fifily developed temperature profile" implies that there 
exists a generalized temperature profile that is invariant with duct 
length. Tile criterion for fiflly developed temperature profile can be 
expressed as 

Thus Eq. (6) could give tile complete solution for tile finds in Fig. 1 
and the final results can be presented as the product of f.R% versus 
tile shear rate parameter [3. 
2. Heat Transfer 

When considering the fluid mechanics of non-Newtonian flow, 
tile velocity bound~-y conditions at surfaces are quite sb-aight for- 
war& Except for certain classes of fluids which exhibit a slip phe- 
nomenon at solid boundalies, tile boundary condition is nomlally 
taken as a no-slip or zero velocity at all solid surfaces. For heat bans- 
fer analyses however, the situation becomes more complicated This 
is because there are many different ways to heat a well which m 
turn affects tile type of thermal boundaly conditions. 

In general, the amount of heat transfer from a surface, or the 
temperature difference between die wall and die fluid are calculated 
using the equation 

QTo~,=hA(T~-T;) 

where: 
Qr~,?heat transfened from tile wall to tile fluid [W] 
h =conv ective heat tram fer coefficient [W/m2K] 
A =heat b-ansfer area [in 2] 
T ~-TI  temperature difference between wall and fluid [K] 

Heat b-ansfer coefficients are normally given m terms of Nusselt 
number (Nu=hL/k) where L is a characteristic length in a particu- 
lar problem. Also, the fluid temperature, T~ will depend upon a par- 
licular heat tt-ansfer situation. Both die characteristic length mid tile 
appropriate fluid temperature will be identified in the following pres- 
entations. 

Since tile heat Wansfer coefficient can vary considerably for dif- 
ferent thermal boundary conditions especially for non-circular duct. 
it is important that tile boundary conditions be specified correctly. 
Although tile nualber of thennal boundaiy conditions is in plmci- 
ple i:ffinite, several classical types have been identified mid are in 
coI I ln lon  USe. 

2-1. Energy Equation (CHF, H1 ) 
Consider the case of constant heat flux (%) per unit area at wall 

in a square duct Tectafieally, constant heat flux problems occur m 
a plenty of situations: electric resistance heating, radiant heating, 
nuclear heating, and m counter flow heat exchangers. 

The energy equation for the thermally developed flow in a square 
duct neglecting viscous dissipation mid rate of energy generation 
[Incropel-a and DeWitk 1996] with constant heat flux (CHF) can 
be written as 

k(a'T +a'T  aT 
t o /  az~) =P%U~ (7) 

with boundary conditions 

T(b,z) =T~, aT(0,z__________) =0 
ay 

T(y,c) =T~, aT(y,0) =0 
az 

3 [T  T ~  
=0 

Writing tile convection rate equatio:~, 

q~ h(T T~) constant 

I f h  is a constant, then 

T~ TB=cons~lt 

from which 

dT~ dT~ 
dx dx 

Thus, from Eq. (7) 

aT _dT~_ dTB 
ax dx dx 

Substituting these into Eq. (8) 

k(a2T a2T'! dTz 
+ 7 )  = P~ 

(8) 

Tile following dmlensio:fless quantities may now be defined 

+ T T~ ++ T + 

Tile dimensionless fatal of Eq. (7) becomes 

O~T++ + O2T++ = 4u + (9) 
ay  +2 az +2 

with boundary conditions 

T++(b+,z +)=0, OT++(0'z§ 0 
ay + 

T++(y+,c +)=Tw, 3T++(Y+'0) 0 
az + 

Considering the definition of bulk temperature, TB: 

J~uTd& 
TB - -  (10) 

A.I1 

For tile square duct geonleby, Eq. (10) may be rewril*en in dinlen- 
sionless from 

1=(cr 1)2 1 
16cr j;+ ~+u+T+dy+dz + (11) 

hltroducing tile definition of T ++ and solving for tile Nusselt num- 
ber gives 

N%, (~162 1)~ 1 (12) 
16cC .[~+ ~+u+T++ dy+dz + 

2-2. Energy Equation (CWT, T) 
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Next consider the case where the surface t~nper-atu1~ (T~) is con- 
stant This is another very common convection application, which 
occurs m such heat exchangers as evaporators, condensers. 

The energy equation for the ttlermally developed flow in a square 
duct neglecting viscous dissipation and rote of energy generation 
~lcropera and DeWitt, 1996] with constant wall telllpei-a[ure (CVV'T) 
can be written as 

k(0~T 0~T~ ~T 
~ +5-2)=Oo~u~ (13) 

with boundary conditions 

T(b,z)=T~, 0T(0,z) 0 
8y 

T(y,c) =T~, 0T(y, 0) =0 
Oz 

For constant wall temperature (T~ constant) 

dT~= 0 
cLx 

and Eq. (7) reduces to 

dT _ T~ -T  dT~ 
cLx T~ T~cLx 

10~_<13___104 
Step 2 : Assume a velocity profile starting with a u++(y § z+)=0 

for a Newtoinan fluic[ The Newtonian velocity profile may then 
be used as the initial velocity profile for the non-Newtc~nml MPL 
calculation. 

Step 3 : Calculate rl~,~ rl~,~ fields by using the assumed velocity 
field 

Step 4 : Solve for u ++ u~(y +, z +) by using ADI (Altem'_atitg Di- 
rection Implicit) method and obt~l fR% by Silnpsoffs rule. TDMA 
(Tri-Diagonal Matin Algorithm) may be used for obtaining the ve- 
locity profile. 

Step 5 �9 Calculate new rl~,~ rl~,~ fi-om the new value of the ve- 
locity field. 

Step 6 : Calculate a new u++(y +, z +) and f.R%. 
Step 7 : Compare the f.R% value with the value calculated in 

step 4. 
Step 8 �9 Use the new f.R% to calculate a new u ++ and f-R% until 

convergence. 
Step 9 : Obtain the u ++ field and f-R%. 
Step 10 �9 Use the u ++ field and f.R% to obtain tempem~Jre pro- 

file by TDMA. 
Step 11 �9 Use the u ++, f.R%,, and T ++ to calculate Nusselt number 

by Simpson's rule. 

substituting m Eq. (13), 

k/O2T O2T'X ~ T~ TdTs 

Defining the following dimensionless quantities. 

T+_ T-T~ 
T~ T~ 

The dimensionless folTll of Eq. (13) becomes 

O~T+ + o2T+ = 4u+T+Nur (14) 

with boundary conditions 

T+(b+,z +) =0, ~T+(O'z+} =0 
Oy+ 

T+(y+,c +) =0, 3T+(y+'0) =0 
0z + 

Eqs. (12) and (14) were solved numerically to obtain the relation- 
ship of Nnsselt number vs. the shear rate parameter 13 for constant 
heat flux and constant wall temperature with the dimensionless ve- 
locity distribution, u + calculated from the solution of the previous 
momentum equation. 

N U M E R I C A L  ANALYSIS 

The nurnerical formulation and solution were relatively s~aight- 
forward, An Alternating Dh-ecEon Implicit method was used with 
successive ovelTelaxation. The algorithm was as follows: 

Step 1 �9 Specify values of n, cC and 13. 
n=l.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4 
cC=1.0 (for square duct) 

R E S U L T S  A N D  D I S C U S S I O N  

A ntmlber of modified power law numerical soluEons have been 
obtained, which for fiflly developed lamiuar duct flows include fiic- 
tion factors and Nusselt numbels for a square duct. In the follow- 
ing, the results of these mlalyses will be presented in gI'aphical form. 
These results are shown in Fig. 3 to Fig. 5. 
1. Friction Factors  for Ful ly  D e v e l o p e d  F lows  

A ntmlerical solution to Eq. (5) for a square duct are shovm in 
Fig. 3. The figure illustrates that in a quantitative sense, 13 defines 
the tt~ee regions as follows. 

Region I - Newtonian 13<10 -3 

60i 
[ . . . . . . . . . . . . . .  n --1.00 

50 

I 
40 

30 

20 

t ~  -=a .... i i . . . . . . .  

Fig. 3. f .Re~ for a M P L  fluid in a square duct. 
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Region 1I - Tlansition 10 3<[3<102 
Region III - Power Law [3> 103 

Fig. 3 also illustpates several important features of modified power 
law system. First, for complete similarity modeling, the modified 
Reynolds nunlbeX R% and tile parameter [3 must both be consid- 
ered. Also, a considerable difference exists if it is assumed that the 
systexn is operating in region IT[ when it acffmlly is opex-ating in Re- 
gionI. Simple calculations show that errors m pressure &op predic- 
tions can be as large as sevel-al hundred percent if such an uncer- 
tainty exists m correct operating region. 

As tile shear x-ate 13~rametex - increases, tile Reynolds ntmlber in- 
creases. As the power law flow index(n) increases, the tendency 
increases to retain Nm~n ian  ctmmct~istics at low Reynolds num- 
bers. As the flow index decreases, the tendency increases to retain 
tile ctmmctexistics of power law fluid at high Reynolds numbers. 

Tile numerical x-esults of the fxiction t~actor and Reynolds num- 
bers relations and the Nusselt numbers for the Newtonian and the 
power law region were compared with other previously published 
asymptotic results [Shah and London, 1978; Rothf~ et al., 1964; 
Ct~l&upafla, 1977; Wfleder and WissM; 1965; Kozicki ozxl Tiu, 
1971 ; Kozicki et al., 1966]. Fox Newtonian fluid flow through a 
square duct, the differences of the friction factors times the Rey- 
nolds nualbers between tile results of Shah ozxl Lc~xlon [1978] and 
the present results are less than 0.02%. 
2. Fully Developed Laminar  Heat Transfer 

Fox Newtonian fluid flow tt~ough a square cluck the differences 
of the Nusselt number (CHF and CWT) between of the results of 
Shah and London [1 97 8] and tile present results are less than 0. 02%. 
These results are shown m Table 1. 

For power law fluids which various flow indices (n=0.4, 0.5, " ,  
1.0) the differences of the fiiction factors times tile g en~-alized Reyn- 
olds numbers between tile results of Kozicki et al. [1966] and the 
present results with [3 104 are less than 0.9%. Tile differences of 
file fiiction factors ~nes file generalized Reynolds numbers between 

Table 1. Comparison of f'ReDh, Num, and Nut of Newtonian fluid 

f. R%~, Nus, Nut 

(1) 56.9083 3.6079 2.9760 
(2) 56.9184 3.6070 2.9760 

(1) Shah and London [1978]. 
(2) Present calculation 

Table 2. Comparison of f. R% of power law fluids 

n (1) (2) (3) 

1.0 56.912 56.876 56.910 
0.9 47.640 47.620 47.887 
0.8 39.692 40.244 40.293 
0.7 33.080 33.804 33.894 
0.6 27.540 28.356 28.489 
0.5 22.932 23.740 23.909 
0.4 19.816 20.008 

(1) Wheeler and Wissler [1965]. 
(2) Kozicki et al. [1966]. 
(3) Present calculation 

4,.2; 

4 , . 2  n ~ 0 , 4 0  

4 , 1  

4.0  n - -  0 

. .  

S.? " ~  

3~ 

l o g #  

Fig. 4. Num for a MPL fluid in a square duct. 

3.5 

3,4 

-%2 

3,1 

3,0 n =1,0 

l o g ~  

Fig. 5. Nut for a MPL fluid in a square duet. 

the results of Wheeler and Wissler [1965] and the present results 
with [3 10 4 are less fflozl 4.0%. Tilese results are shown m Table 2. 

Figs. 4 and 5 show the fully developed Nusselt numbers versus 
the shear 1-ate paranmter for a square duct for the fflelmal boundaiy 
coMitions of constant wall temperature (CVgT) and constant heat 
flux (CHF). It is interesting to note that the effect of the shear rate 
parameter [3 is nmch less fox-tile fully developed Nusselt numbers 
than for file product f-Re,,. Thus it would apl:ear that file effect of 
[3 on file hy&odyx~nic design is much more critical fox tile ttlennal 
design. 

For power law fluid flow through a square duct, the differences 
of file Nusselt nunbers (CHF and CWT) between tile results of file 
results of Ct~xh~patum [1977] and file present results are less than 
4.0%. These results are shown in Table 3. 

The shear rate l:~rameter defines the transition region (approxi- 
mately 1(r25___[3___10~5) and is useful to estimating whether the fluid 
is a fully developedNewtonian fluid ([3<10 zS) or a fully developed 
Power Law fluid ([3_>102 5). Thus tile shear rate parameter [3 can be 
used to determine in which of the three regions (Fig. 1) a particular 
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Table 3. Comparison of Nu of power law fluids 

n N u.,@ 0 Nu. r  (1) N u.,vl (2) N u t  (:~ 

1.0 3.612 3.607 2.975 2.976 

0.9 3.648 3.657 2.997 3.027 
0.8 3.689 3.718 3.030 3.087 

0.8 3.741 3.793 3.070 3.155 

0.6 3.804 3.887 3.120 3.227 
0.5 3.889 4.010 3.184 3.317 

0.4 4.175 3.436 

(1) Chandmpatla [1977]. 
(2) Present calculation 

system is operating. 

C ONCLUSION 

mal boundary cc~lditions (CHF and CWT) a non-Newtonian fluid 
with flow behavior index less than one gives a higher heat transfer 
coefficient than a Newtonian fluid. Due to the reduction in fiicEon 
power requirement and the augmentation in heat transfer rates, mod- 
ified power law fluids seem to be better working fluids in heat ex- 
changer compared to Neuaxfian fluids. On the other tkand, the use 
of appropriate modified power law fluids may lead to heat transfer 
enhancement without the handling difficulties. 

The feasibility of applicaEon of tiffs fiiction factor and Reynolds 
number relation will be valid for the determination of cross-sea 
tional shapes and toimosities of creviced channels in packed beds 
and porous media; and the heat transfer augmentation for modified 
power law fluids in a square duct can be applied for the design of a 
liquid cooling module in electronic packaging, where uneven ther- 
mal bomdary conditions with non-circular ducts are commonly em- 
ploy~l. 

Fluids which are called "power law" sometimes follow that con- 
sEtutive equaEon, but depending utxxl Ol~rating shear rate they can 
also act as Newtonian or Transitional fluids. 

By using a more general consEtutive equation, tile modified power 
law equation, solutions are possible which take tiffs shear rate de- 
pendence into account and through a dimensionless shear rate par- 
ameter enable an appropriate choice of the pressure &op and heat 

transfer solutions. 
This situation has been examined for forced laminar convection 

in ducts and it is illuslI-ated that serious errors can results if the in- 
correct shear rate solution is used Of paKicular concern are duct 
flows operating at low Reynolds nunlbers. 

Numerical solutions for laminar fiflly developed flow were ob- 
tained for fi-iction factor times Reynolds number for MPL fluid flow 
ti~-ough square duct. By using the MPL constitutive equalioil, we 
obtained solutions which are applicable over a wide shear rate l-ange 
of pseudoplastic fluids fic~n Newtotfian betkavior to the higher shear 
rate range. A shear rate parameter was identified which specifies 
whether a l:~rticular system for a typical pseudoplastic fluid is oper- 
atiug in the Newtoniml, ~-msilion, or power law regiotl The numer- 
ical results of the pressure drop and heat ~-ansfer augmentation for 
the Newtonian and power law regions were compared with other 
previously published asymptotic results as discussed earlier. 

As the shear rate increases, the tendency increases to retain power 
law fluid chm-acteristics at high Reynolds ntalbers. As the shear 
rate decreases, the tendency increases to retain Newtonian fluid dial; 
acteristics at low Reynolds numbers. 

During the analysis, the shear rate parameter [3 can be used to 
detemline that the particular system is opel-amg in one of tile three 
regions (Figs. 1 and 3). 

For pseudoplastic non-NeuXotfian fluid, the Modified Power Law 
model is recommended to use because the fluid propemes have big 
discrepancies between the power law model and the actual values 
in low and medium range of shear rates. 

The numerical solution makes possible the conservation of simil- 
itude when designing duct systelns for such fluids as modified power 
law fluids since both the approprinte Reynolds number and the shear 
rate ranges are considered. 

From a comparison of tile numerical calculations between New- 
tonian and non-Newtonim fluid flow it is obvious that for the ther- 

NOMENCLATURE 

A 
& 
b 
b + 
C 

C + 

% 
D~ 

4, 
f 
h 
K 
k 
Nu 
N u m  

Nut 
n 

Q Total 

R~ 

R %  
R% 
R% 
T 
T + 
T ++ 

Ts 

T ;  
U 

U 
u �9 
u** 

x , y ,  Z 

: heat transfer area [m 2] 
: cross-sectional area of duct [In 2] 
: one half of duct width [in] 
: dimensionless duct width [-] 
: one half of duct height [in] 
: dimensionless duct height [-] 
: specific heat [J/kg.K] 
: hydraulic diameter [4• area/wetted pe- 

rimeter= 4bc/(b+c)] [m] 
: shear rate tensor [l/s] 
�9 Darcy friction factor [ -2(dp/dx)Djpu]  [-] 
�9 convective heat transfer coefficient [W/m2.K] 
�9 power law consistency [Ns~/m 2] 
:thermal conductivity [W/m .K] 
: Nnsselt number [-] 
: Nusselt ntmlber of CHF [-] 
: Nusselt number of  CWT [-] 
: power law flow index [-] 
: heat transferred fi-onl the will to the fluid [W] 
: heat flux at wall [J/s .m 2] 
: hydl-aulic radins (cross-sec~ional area/wetted perimeter 

bc/(b+c)) [m] 
�9 Newtouian Reynolds number (puD~/rl0) [-] 
�9 power law Reynolds number (pu 2 ~D2/K) [-] 
�9 modified power law Reynolds number (puDjrl*) [-] 
:temperature [K] 
: dimensionless temperature [-] 
: dimensionless temperature [-] 
: bulk temperature [K] 
: f luid temperature [K] 
: wall temperature [K] 
: velocity in flow direction [m/s] 
: mean velocity in flow direction [m/s] 
�9 dimensionless velocity in x-direction (u/u) [-] 
: dimensionless velocity in x-direction (2u+/f.R%) [-] 
: coordinates 
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[~* 

? 
q~ 
qo 
q* 
q+ 

P 

I, U, lII 

: aspect ratio (c/o) [-] 
: shear rate parameter [(rl/K)(-u/Dh) 1-~] [-] 
: shear rate [l/s] 
: apparent viscosity ('e/~) [Ns/m 2] 
: zero shear rate viscosity [Ns/m 2] 
: reference viscosity (rlJ(1 +[3)) [Ns/m 2] 
: dimensionless viscosity (rL/rl ~) [-] 
: fluid density [kg/m 3] 
: shear stress [Ns/m 2] 
: invariants of shear rate tensor [-] 
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